
Abstract Two new docking programs FRED (OpenEye
Scientific Software) and Glide (Schrödinger, Inc.) in
combination with various scoring functions implemented
in these programs have been evaluated against a variety
of seven protein targets (cyclooxygenase-2, estrogen re-
ceptor, p38 MAP kinase, gyrase B, thrombin, gelatinase
A, neuraminidase) in order to assess their accuracy in
virtual screening. Sets of known inhibitors were added to
and ranked relative to a random library of drug-like com-
pounds. Performance was compared in terms of enrich-
ment factors and CPU time consumption. Results and
specific features of the two new tools are discussed and
compared to previously published results using FlexX
(Tripos, Inc.) as a docking engine. In addition, general
criteria for the selection of docking algorithms and 
scoring functions based on binding-site characteristics 
of specific protein targets are proposed.
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Introduction

Modern approaches for finding new leads for therapeutic
targets are increasingly based on three-dimensional in-
formation about receptors. As more and more pharma-
ceutically relevant target 3D structures become avail-
able, efficient techniques for exploiting the information
contained in these structures gain importance over ran-
dom experimental screening. [1] Structure-based virtual
screening methods [2, 3, 4] now play a major role in lead
finding. In particular, software tools for small-molecule
docking [5, 6, 7] have recently been applied successfully
to large compound libraries. [8, 9, 10, 11]

Database docking is an approach to solving the prob-
lem of identifying those compounds in a database of
small organic compounds that display favorable steric as
well as electrostatic interactions to the target binding
site. Docking programs consist of two essential parts: an
algorithm that searches the conformational, rotational
and translational space available to a candidate molecule
within the binding site, and an objective function to be
minimized during this process. This function calculates a
crude measure of binding affinity or receptor–ligand
complementarity and is usually referred to as a scoring
function. [12, 13, 14, 15] In order to be successful as a
virtual screening tool, a docking program must be able to
find docking solutions (called poses) for active mole-
cules in accordance with experiment, it should be able to
separate active compounds from inactive ones, and it
should use as little CPU time as possible per compound
to be applicable to large libraries.

There are three principal algorithmic approaches to
docking small molecules into macromolecular binding
sites. [7] A first class of algorithms aims at simulta-
neously optimizing the conformation and orientation of
the molecule in the binding site. Because of the tremen-
dous complexity of this combined optimization problem,
systematic solutions are out of reach, and stochastic 
algorithms such as genetic algorithms or Monte Carlo
simulations are usually employed. Docking programs
based on such stochastic algorithms, in particular, can
give very accurate docking solutions even for very large
and flexible ligands. [16, 17] For practical virtual screen-
ing, however, this class of algorithms falls behind the
other two for its lack of speed, especially because dock-
ing runs have to be repeated several times for confident
structure prediction. [18, 19] It will therefore not be re-
garded further here. A second class of algorithms sepa-
rates the conformational search of the small molecule
from its placement in the binding site. A conformational
analysis is carried out first, and all relevant low-energy
conformations are then rigidly placed in the binding site,
whereby only the remaining six rotational and translatio-
nal degrees of freedom of the rigid conformer must be
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considered. We will refer to this approach as “multicon-
former docking”. Finally, the third class of docking algo-
rithms exploits the fact that most molecules contain at
least one small, rigid fragment that is able to form spe-
cific, directed interactions with a receptor. Such so-
called base fragments are docked rigidly at various 
favorable positions of the binding site. Docking solu-
tions are then built starting from these various initial
base fragment positions in an incremental construction
process, thereby exploring the (torsional) conformational
space of the newly added fragments.

Scoring functions have a two-fold task. First, they
serve as an objective function to differentiate between
diverse poses of a single ligand in the receptor binding
site. Second, after docking a compound database, a scor-
ing function is needed to estimate binding affinities of
different receptor–ligand complexes and to rank order
the compounds. Due to the crucial role of scoring, a
large number of functions have been developed. They
can be classified in three categories. The most important
class, both in terms of usage and number of available
functions, is empirical scoring functions. [14] They ap-
proximate the free energy of binding as a weighted sum
of terms, each term being a function of the ligand and
protein coordinates and describing a different type of in-
teraction such as lipophilic contacts and hydrogen bonds
between receptor and ligand. The second class of scoring
functions is based on molecular mechanics force fields.
The binding affinity is estimated by summing up the
electrostatic and van der Waals interaction energies be-
tween receptor and ligand. Finally, so-called knowledge-
based scoring functions [15] are derived from statistical
analyses of experimentally determined protein–ligand 
X-ray structures. The underlying assumption is that in-
teratomic contacts occurring more frequently than aver-
age are energetically favorable. Knowledge-based func-
tions are sums of many atom-pair contact contributions
for protein and ligand atom type combinations. We have
omitted this latter class of scoring functions from the
present analysis for two reasons: first, their performance
has proven to be rather unpredictable in a previous virtu-
al screening study, [20] and second, failure cases cannot
be explained easily and functions cannot be improved 
in a straightforward way. This is because the many indi-
vidual atom-pair functions are difficult to interpret apart
from donor–acceptor or lipophilic–lipophilic contact
terms, which usually display the well-known distance
dependence of these particular interactions.

Scoring functions that contain no directional (angular)
terms and that have large distance cutoffs can be regarded
as soft functions, because their values do not change
abruptly with slight changes of ligand orientation and em-
phasize lipophilic contacts and general steric fit. Soft
scoring functions are knowledge-based ones like PMF
[21] and DrugScore, [22] but also the “piecewise linear
potential” (PLP) [23] and the Gaussian shape fitting 
procedure by OpenEye. [24] The empirical functions 
ChemScore [25, 26] and the closely related FlexX scor-
ing function [27] are “hard”, because they contain angu-

lar terms for hydrogen bond interactions and emphasize
these directed interactions more strongly. The Screen
Score function was developed as a compromise between
the hard, directed terms of the FlexX scoring function and
the softer PLP potential. [20] Force fields also belong to
the category of hard functions, because they naturally in-
clude not only attractive, but also repulsive interactions
that lead to steeper potential surfaces. The distinction be-
tween hard and soft will become more apparent as appli-
cations of each of the functions mentioned are discussed.

The rough overview in the preceding paragraphs
makes it clear that many options for combinations of
docking algorithms and scoring functions are available.
However, it is by no means clear under what circum-
stances a particular combination will fail or give good
results. In the past, newly developed tools have rarely
been tested on large and consistent test sets. Further-
more, even for the same algorithm, implementation de-
tails vary greatly and include many heuristic parameters
[28] that are difficult to optimize. First comparative stud-
ies for virtual screening have given some insight into
comparative performance. [29, 30] We have compared
various scoring functions in combination with the dock-
ing program FlexX. [20] In the present contribution, we
build on this study and evaluate two very recently devel-
oped docking programs Glide (Schrödinger, Inc.) and
FRED (OpenEye Scientific Software) that are two differ-
ent implementations of multiconformer docking. Results
are compared to those previously obtained with the in-
cremental construction program FlexX. [27, 31, 32, 33]
We show that multiconformer docking and incremental
construction algorithms are complementary to each 
other, and that either approach is especially powerful in
combination with specific scoring functions and receptor
characteristics. Thus, we consider this study as an impor-
tant step towards general guidelines for setting up effi-
cient virtual screening runs.

Materials and methods

Preparation of compound libraries

Inhibitors for the seven targets in Table 1 as well as the subset of
the WDI database were taken from a previous publication. [20] For
Glide docking studies, the inhibitors and the selected WDI subset
were converted to mae format (Maestro, Schrödinger Inc.) and op-
timized by means of the MMFF94 force field. For docking studies
with FRED as a docking engine, multiconformer libraries of the
known inhibitors and the WDI subset in a binary format were pro-
duced by OMEGA (OpenEye Scientific Software). Modifications
applied to the default settings of OMEGA were (i) rejection of con-
formers with an energy difference to the global minimum of
>5.0 kcal mol–1 (GP_ENERGY_WINDOW), (ii) maximum num-
ber of output conformers 400 (GP_NUM_OUTPUT_CONFS) and
(iii) low energy selection (no random selection) of conformers
from the final ensemble (GP_SELECT_RANDOM false).

Preparation of protein target structures

Protein target structures were used as described in [20] and further
modified to be used in FRED or Glide docking calculations. For
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Glide calculations, proteins and co-crystallized ligands were com-
bined and hydrogen atoms were added within Maestro. The com-
plexes were stored in the MacroModel dat format. The pprep
script shipped by Schrödinger was used to check protonation
states and tautomeric forms. All receptor–ligand complexes were
minimized within MacroModel with the OPLS-AA force field by
application of the autoref.pl script. Progressively weaker restraints
(tethering force constants 3, 1, 0.3, 0.1) were applied to nonhydro-
gen atoms only. This refinement procedure is recommended by
Schrödinger (technical notes for version 1.8), because Glide uses
the full OPLS-AA force field at an intermediate docking stage and
is claimed to be more sensitive towards geometric details than 
other docking tools. Minimizations were performed until the aver-
age root mean square deviation of the nonhydrogen atoms reached
0.3 Å. For FRED calculations, polar hydrogens were added by
means of the interactive modelling program MOLOC [34] and
were used structurally unchanged in further docking studies.

FlexX calculations were performed as described previously.
[20] We include a short introduction to the FRED and Glide dock-
ing algorithms, because details about these tools have not been
published yet.

FRED docking

FRED docking calculations were performed with FRED version 1.1
(OpenEye Scientific Software). For efficient handling of large com-
pound databases, FRED distributes jobs via PVM [35, 36] over
multiple processors. The first stage in docking is a shape fitting pro-
cess, which takes a set of ligand conformers as input and tests them
against a “bump map” (a Boolean grid with true values where li-
gand atoms can potentially be placed). Orientations that clash with
the protein or are distant from the active site are rejected. The crude
docking solutions are further tested against a pharmacophore feature
if specified, and any poses that do not satisfy the pharmacophore are
rejected. Poses surviving the shape fitting routine can then be
passed through up to three scoring function filters in the screening
process. Various options are available for optimization with respect
to the built-in scoring functions: optimization of hydroxyl group
rotamers, rigid body optimization, torsion optimization, and reduc-
tion of the number of poses that are passed on to the next scoring
function. Available scoring functions in FRED are ChemScore, PLP,
ScreenScore, and Gaussian shape fitting. The latter is a proprietary
function of OpenEye. Qualitatively, the Gaussian scoring function
has favorable values when the ligand and protein have a high sur-
face contact and little volume overlap.

Glide docking

Glide calculations were performed with Impact version v18007
(Schrödinger, Inc.). The para_glide facility offers a way to break up
databases into several segments that can be run on multiple proces-
sors. Schrödinger recommends the performance of test calculations
with different scaling factors for the receptor and ligand atom van
der Waals radii, because steric repulsive interactions might other-
wise be overemphasized, leading to rejection of overall correct

binding modes of active compounds. Grid calculations with Glide
represent a time-consuming process and require on average
30–60 min CPU time on SGI R10k processors, depending on the
box size to specify the active site and the scaling factors applied.
We found that full van der Waals radii can be used for most targets,
except COX-2, where optimal results were obtained with a scaling
factor of 0.9 for receptor atoms and 0.8 for ligand atoms, p38 MAP
kinase with 0.9 for receptor atoms, and gelatinase A with 0.9 for 
ligand atoms. In contrast to FRED, Glide generates conformations
internally and passes these through a series of filters. The first plac-
es the ligand center at various grid positions of a 1 Å grid and 
rotates it around the three Euler angles. At this stage, crude score
values and geometric filters weed out unlikely binding modes. The
next filter stage involves a grid-based force field evaluation and re-
finement of docking solutions including torsional and rigid-body
movements of the ligand. The OPLS-AA force field is used for this
purpose. A small number of surviving docking solutions can then
be subjected to a Monte Carlo procedure to try to minimize the en-
ergy score. The final energy evaluation is done with GlideScore,
Schrödinger’s implementation of the ChemScore function. This
differs from ChemScore in slightly different weighting factors for
each term and an additional steric repulsive term.

Schrödinger states that there is an effect of the ligand input 
geometry on poses generated by Glide. We have found that this is
indeed the case to a great extent. Trial runs to reproduce the X-ray
structures of the thrombin–NAPAP complex or the HIV prote-
ase–Saquinavir complex resulted in significantly different (rmsd
values >2) rank 1 solutions with different low-energy conformers
as starting conformations. This points to a lack of coverage of
conformational space in the internal conformer generator. For our
test cases, most of the known inhibitors were extracted from crys-
tal structures or built by modeling ligands into binding sites, and
therefore are already close to the native ligand. Thus, the GLIDE
enrichment factors presented in this study might be overestimated
and the enrichment factors given should be interpreted with 
caution.

Scoring functions

The principal scoring function used in Glide is called GlideScore, a
modified version of ChemScore with slightly different weighting
factors for each term and an additional steric repulsive term. Chem-
Score does not penalize mismatches between lipophilic and hydro-
philic groups. To overcome this limitation, a penalty term was in-
cluded in GlideScore that adds 3 kcal mol–1 to the score for each
polar group buried in a lipophilic environment. A so-called com-
posite scoring function (GlideComp) is also available. It is a
weighted sum of the GlideScore (default weighting factor 0.6) and
the OPLS-AA nonbonded energy (0.08). Schrödinger claims
(Technical Notes for version 1.8), that this composite score in gen-
eral yields better database enrichment factors than either Glide-
Score or Coulomb–vdW by itself. In addition, threshold values for
individual score components can be used to filter out compounds
with low receptor–ligand complementarity. The two built-in filters
are (i) a “strength of interaction” filter, i.e. the OPLS-AA nonbond-
ed energies (van der Waals and Coulomb terms) and (ii) a “speci-
ficity” filter, for which the hydrogen bonding and metal ligation
energies from GlideScore are used. For re-scoring Glide docking
solutions with ScreenScore, we used Glide rank 1 solutions and re-
scored with the FlexX implementation of ScreenScore.

Scoring functions implemented in FRED are Gaussian shape
scoring, ChemScore, PLP and ScreenScore. The Gaussian shape
function describes the shape of individual atoms as spherical
Gaussian functions and returns favorable score values for a large
surface contact between ligand and receptor and low volume over-
lap. ScreenScore was derived through a combination of PLP and
FlexX terms. [20] The ScreenScore implementation in FRED does
not include an angular term for metal contacts, and features an ad-
ditional clash term that penalizes heavy atom clashes with less
than 0.5 Å overlap by 1 kJ mol–1, and more severe clashes by
10 kJ mol–1. The overlap is calculated as the difference between
the atom distances and the sum of the atom van der Waals radii.
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Table 1 Number and origin of active compounds used in this
docking study [20]

Number of Target Origin
compounds

128 Cyclooxygenase 2 [38, 39, 40]
55 Estrogen receptor [41, 42, 43]
72 p38 MAP kinase Roche, [44]
36 Gyrase B Roche
67 Thrombin [45, 46]
43 Gelatinase A and general MMP WDI, PDB, [47]
51 Neuraminidase PDB, Roche



Hardware and average run times

Preparation of compound libraries, receptor setups, grid calcula-
tions (Glide) and docking runs were performed on multiprocessor
SGIs, either SGI R12k 400 MHz or SGI R10k 195 MHz. OMEGA
is able to convert approximately 100,000 ligands per processor
and per day to multiconformation libraries in binary format to be
used in FRED docking. Further preprocessing of protein targets
used in FRED docking is reduced to addition of polar hydrogen 
atoms. Grid calculations with Glide require on average 30–60 min
CPU time on SGI R10k processors. Average CPU time consump-
tions on SGI R10k for docking calculations are about 2 min per 

ligand for FlexX, 6–7 min for Glide and 13.5 s for FRED (with all
optimization flags in FRED activated).

Results and discussion

Figure 1 shows schematic binding site outlines and rep-
resentative inhibitors of the protein targets investigated.
For the sake of discussion, it is useful to group the seven
targets into three classes according to the nature of their
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Fig. 1 Binding site characteris-
tics and representative inhibi-
tors for the different protein
targets. The targets are shown
in increasing order of binding
site polarity. Explicitly drawn
pocket outlines represent 
solvent-inaccessible parts of
the binding cavities



binding sites. COX-2 and the estrogen receptor can be
classified as buried, lipophilic binding sites, whereas the
binding sites of the remaining five targets are more polar
and also more solvent exposed. Neuraminidase and gela-
tinase A are the most polar of these. It will become ap-
parent that this classification is reflected in the perfor-
mance of particular combinations of docking tools and
scoring functions.

The main body of virtual screening results are pre-
sented in Fig. 2. This figure gives an overview of the en-
richment of known inhibitors obtained with various
docking/scoring combinations for all seven test targets.
For a detailed discussion, we need the distinction be-
tween the term “objective function” estimating the re-
ceptor–ligand interaction energy, which is used and min-
imized during the docking process, and the term “scoring
function”, denoting a function that is used for rank or-
dering of ligands relative to each other. The data in
Fig. 2 were obtained with combinations of objective and
scoring functions that are specific to each tool: in the
case of FlexX, the objective function during the docking
phase was the native FlexX function, for FRED calcula-
tions the Gaussian shape function was used in the dock-
ing phase, and for Glide GlideScore and the OPLS-AA
force field serve as objective functions (for details see
below and in the methods section). It should be noted
that the FlexX scoring function is very closely related to
ChemScore. For the seven targets, FlexX/ChemScore re-
sults (not shown) are only slightly worse than the
FlexX/FlexXScore results depicted in column 1 of the
seven panels in Fig. 2. Here we chose the native FlexX
scoring function rather than ChemScore because its
terms are adjusted to the details of the geometric interac-
tion scheme used in FlexX.

For didactic reasons, the following analysis of these
results deals with various aspects of the docking and
scoring problem consecutively. Eventually, of course, it
is the interplay of all factors – the choice of the docking
algorithm, the definition of the active site, the objective
and scoring functions employed, and the use of addition-
al constraints – that influences the outcome of virtual
screening runs. To illustrate individual factors, we will
exemplify important findings with reference to further
calculations.

Shape fitting versus incremental construction

For COX-2 and the estrogen receptor, the binding mode
of ligands is determined by the overall shape of the bind-
ing pocket rather than by directed hydrogen bonding in-
teractions. In these cases, the FRED multiconformer
docking approach in conjunction with the Gaussian
shape fitting as objective scoring function alone can lead
to satisfactory enrichment of known inhibitors, superior
to that obtained with FlexX (Fig. 3a). However, as soon
as hydrogen bonding plays a role, pure shape fitting
gives rather poor results (Fig. 3b). In contrast to multi-
conformer approaches, the incremental construction 

algorithms often fail for completely lipophilic binding
sites, since there are no clear criteria for placing the ini-
tial ligand fragments and the search easily gets trapped
in irrelevant regions of the binding pocket. For instance,
irrespective of the choice of the scoring function, FlexX
performs worse for COX-2 than FRED or Glide proto-
cols.

The binding site of thrombin is an interesting interme-
diate case. It is the only other target, apart from COX-2,
for which Gaussian shape fitting alone gives at least
moderate enrichment. This is due to the narrow S1 pock-
et, for which the Gaussian shape function can effectively
detect compounds with high complementarity. Further-
more, the thrombin test set of known inhibitors contains
thrombin inhibitors with purely lipophilic S1 moieties
rather than the usual positively charged donor groups
(Fig. 1). On the other hand, the majority of the inhibitors
do form hydrogen bonds with the Asp 189 side chain at
the bottom of the S1 pocket. This residue is an ideal 
anchor point for incremental construction algorithms.
The final scoring function, however, should be relatively
soft, because otherwise nonhydrogen bonding inhibitors
receive much lower ranks than the polar ones. This can
be demonstrated for the example shown in Fig. 1, where
ChemScore ranks this ligand with a purely lipophilic
moiety in the S1 pocket on one of the last positions
amongst known inhibitors and for the softer function
ScreenScore the same ligand can be found among the top
third of known inhibitors.

In contrast to COX-2 and the estrogen receptor, the
binding sites of p38 MAP kinase, gyrase, thrombin, 
gelatinase A and neuraminidase are solvent exposed and
hydrogen bonding is an essential element of inhibitor
binding. In these cases, pure shape fitting often leads to
the selection of the wrong binding mode, because hydro-
gen-bonded complexes often display less surface contact
than nonhydrogen-bonded alternative poses and thus 
often do not receive favorable scores. Therefore, in the
case of FRED, good performance is only obtained if not
just one but all poses generated in the shape fitting 
routine are passed on to a screening process with a dif-
ferent scoring function. Enrichment drops considerably
if only a fraction of the poses is passed on to the scoring
function for all seven test targets (results not shown).

On the other hand, functional groups in the receptor
site capable of forming hydrogen bonding interactions
can serve as good anchor points for incremental con-
struction algorithms. Once the initial fragment is correct-
ly placed, the incremental construction process is very
efficient, since the confines of the binding site force the
algorithm to focus on relevant conformations only. Opti-
mum performance of FlexX is observed for those bind-
ing sites that have very obvious anchor points (e.g. Asp
189 at the bottom of the S1 pocket of thrombin). The
presence of too many polar groups in the binding site 
reduces performance again, due to the difficulty of dis-
criminating between many alternative placements of 
initial fragments with equally good hydrogen bonding
geometry.
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Fig. 2 Results obtained with
FlexX, Glide and FRED in
combination with different
scoring functions for the 
seven investigated protein 
targets. Abbreviations for 
scoring functions are: 
FS, FlexXScore; 
SS, ScreenScore; 
GS, GlideScore; 
GC, GlideComp; 
CS, ChemScore; 
PLP, pairwise ligand–protein
potentials. In the case of FlexX,
the objective function during
the docking phase was the 
native FlexX scoring function,
for FRED calculations the
Gaussian shape function was
used in the docking phase, and
for Glide GlideScore and
OPLS-AA serve as objective
functions (details see methods
section). FRED and Glide 
results for gyrase B are shaded
in gray since poses seem to be
unreasonably predicted



Binding site definition

The success of docking calculations depends crucially on
the specification of a binding site to constrain the search.
The smaller the binding site, the faster and the more reli-
able are calculations, because fewer alternative binding
orientations can be generated that compete with one an-
other. For both Glide and FRED calculations, the binding
site is defined by a rectangular box oriented parallel to
the main axes of the coordinate system, whereas for
FlexX calculations one has to define a set of protein 
atoms that should be considered as being part of the
binding site or “active”. Curiously enough, much of the
performance difference between FRED or Glide and
FlexX can be attributed to this difference in binding site
definition. The effectiveness of the two approaches in 
reducing the search space to relevant regions depends on
the nature of the binding site. The following two exam-
ples illustrate this point.

The neuraminidase binding site is relatively shallow
and solvent exposed. Due to the presence of many polar
groups, FlexX finds many initial placements of base
fragments with a good hydrogen bonding pattern for all
those compounds that are capable of forming hydrogen
bonds. The incremental construction process then allows

“growing” many solutions out of the binding pocket into
the solvent-exposed region (Fig. 4), since there are no
conformational restrictions in this area. As a result,
many solutions only partially occupy the binding site but
still obtain high scores, because they form a number of
geometrically correct hydrogen bonds. In contrast, for
this solvent-exposed binding site, bounding boxes as 
employed by FRED or Glide act as efficient filters for
removing poses whose center of mass (or some other
definition of the molecule center) is located in the 
solvent region.

The ATP binding site of p38 MAP kinase is a good
example for the opposite extreme. The binding site is a
relatively narrow lipophilic cleft, which means that a
bounding box cannot trim down the solution space sig-
nificantly, and there is no easy way to orient the box
such that it encloses only the relevant region of the cavi-
ty. Thus, it can happen that these docking tools explore
irrelevant side pockets, especially if the box boundaries
can only be adjusted in increments of 2 Å, as in Glide. In
contrast, the “active atom” approach of FlexX has the
advantage that few selected residues (in this case the
hinge region with Met 109 at the center) can be chosen
as the binding site, such that base fragments will be
placed only there. This selection resembles the definition
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Fig. 3 a Results for COX-2
and the estrogen receptor
gained by a pure shape fitting
routine (FRED) in comparison
to FlexX results. b Shape 
fitting results (FRED) for the
seven investigated protein 
targets

Fig. 4 The effect of different
binding site definition as they
are applied in FRED and
FlexX. Active site surface of
neuraminidase with correctly
docked structures of two
known ligands (left), 150 top
ranking structures from the
neuraminidase library docking
run with FRED (center), 150
top ranking structures from the
corresponding FlexX calcula-
tion



of a 3D pharmacophore, which will be discussed further
below.

Scoring functions and binding site characteristics

A target-specific selection of the docking algorithm can
increase the performance in virtual screening. However,
the choice of the docking algorithm cannot be made in-
dependently from the choice of the objective function.
Furthermore, none of the currently available scoring
functions would perform equally well in virtual screen-
ing for all types of receptor sites, even when only cor-
rectly docked poses of active compounds would have to
be ranked relative to a random library. Thus, it is even
more important to derive general guidelines for scoring
than for docking algorithms.

We have seen that a multiconformer docking algo-
rithm can function properly in conjunction with a very
soft objective function during the docking phase
(FRED/Gaussian shape fitting, Fig. 3a). The more 
narrow and lipophilic the target active site is, the 
more effective is the initial use of a soft scoring func-
tion. Using Glide, we have observed that scaling van der
Waals radii of the ligand and receptor to 0.9 or 0.8,
which essentially leads to a softer van der Waals poten-
tial, increases the enrichment rates for COX-2, whereas
for all other six targets the full radii gave the best 
results.

In contrast, incremental construction algorithms rely
on the presence of specific directed interactions, which
must therefore also be taken into account in the objective
function. Thus, for polar active sites that form a signifi-
cant number of hydrogen bonds to the inhibitors, FlexX
results are generally worse with PLP as the objective
function than when PLP is used to re-score poses that
have been generated with the harder FlexX or Chem-
Score functions. For highly lipophilic active sites, how-
ever, FlexX performs well with PLP as the objective
function. This is exemplified in Fig. 5 for the targets
COX-2 and p38 MAP kinase. For COX-2, the perfor-
mance difference between using PLP as the objective
function and using PLP as the scoring function after
docking with FlexXScore is not very pronounced, but
both procedures lead to significantly better results than
docking and scoring with FlexXScore. For the p38 ATP
binding site, where the formation of specific hydrogen
bonds plays a major role in receptor–ligand binding, us-
ing PLP as the objective function drastically decreases
inhibitor enrichment. The ATP binding site of gyrase B
is even more lipophilic, and also more shallow and sol-
vent exposed than the p38 MAP kinase ATP binding site.
Again, PLP is the best function for scoring poses gener-
ated by FlexX. It should be noted that, for the gyrase B
target, Glide and FRED suffer from the active site defini-
tion problem discussed above for p38 MAP kinase, al-
though the enrichment, especially with Glide, seems to
be better than for p38 MAP kinase. Visual inspection of
the highest ranked poses generated by FRED and Glide

for gyrase B, however, showed that most of the inhibitor
binding modes generated were not in accordance with
experiment. This is the only case in our test suite where
considerable enrichment was obtained with obviously
wrong binding modes. The Glide and FRED results for
gyrase B should therefore not be compared to the FlexX
results, where correct inhibitor binding modes were 
generated.

Using a soft objective function, followed by optimiza-
tion with restrictive repulsive and angular terms seems to
be a good general strategy for multiconformer docking.
In this context, one particular feature of Glide should be
highlighted. In Glide, intermediate force field filtering
and minimization are always executed after the initial
placement of the conformers and before the final scoring
with GlideScore. The OPLS-AA nonbonded terms are
used to describe the protein–ligand interactions. Because
the nonbonded interactions naturally include electrostatic
as well as steric (van der Waals) repulsive interactions,
this procedure can help to weed out many mismatching
docking solutions that other scoring functions could not
detect, because they do not contain the necessary penalty
terms. The force field filtering step is especially efficient
for targets with many polar functional groups. For this
reason, Glide performs particularly well for the two most
polar targets neuraminidase and gelatinase A. Especially
impressive are the enrichment rates for neuraminidase,
where the majority of active compounds are contained
within the top 2 percentiles of the ranked database. In
Glide, poses can optionally be re-scored with the 
so-called GlideComp function, a weighted sum of the
GlideScore and OPLS nonbonded terms. This function
should be more sensitive towards electrostatic mismatch-
es than GlideScore itself, but otherwise have similar
properties to GlideScore, its main component. Interest-
ingly, GlideComp performs slightly better than Glide-
Score for all targets (except the estrogen receptor), espe-
cially in enriching inhibitors in the top 2 percentiles.
This points to the fact that penalty terms can play an im-
portant role in recognizing false positives that form
many favorable interactions but in addition display re-
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Fig. 5 Results for COX-2 and p38 MAP kinase to demonstrate
that when using PLP for re-scoring rather than as the objective
function results are improved



pulsive interactions that render the computed binding
mode unlikely to occur.

We have generally observed that FRED virtual
screening runs are more effective if all poses are fully
optimized with each scoring function and not simply re-
scored. This optimization includes rotation around all
torsional angles including those of terminal OH groups
as well as solid body movements. However, not all scor-
ing functions are equally suited for flexible optimization.
ScreenScore was derived without flexible optimization
in mind, and so far has been used together with only the
PLP repulsive term in FlexX. The FRED ScreenScore
implementation adds the repulsive part of the FlexX con-
tact (“lipo” and “ambig”) term to this. Obviously, this
does not lead to a sufficient balance between attractive
and repulsive terms. Optimization with PLP leads to
clash-free poses and generally better enrichment than
rigid re-scoring, whereas poses optimized with Screen-
Score often display steric clashes between receptor and
ligand, which are obviously outweighed by attractive po-
lar interactions. Especially for narrow binding sites, this
leads to serious deficiencies in virtual screening. There-
fore, FRED/ScreenScore results are particularly poor for
COX-2 and thrombin (in the case of Gelatinase A, 
enrichment is extremely low because of the missing 
angular dependence of the metal interaction term in the
current FRED ScreenScore implementation). However,
if ScreenScore is used to score poses generated by FlexX
or Glide, results are generally very satisfactory. In both
cases, no optimization is performed and the poses are 
already relatively clash free (especially in the case of
Glide due to the force field optimization step).

Score components as filters

Schrödinger recommends using both the nonbonded
OPLS-AA energies and the hydrogen bonding energies
from GlideScore separately as computational filters to
weed out poses with low “strength of interaction” and
“specificity”, respectively. This is done by requiring that
each of these components should be higher than a user-
defined threshold value for each pose. The use of such
filters is of course a highly subjective step in a virtual
screening procedure, and it is useful only if one is aware
of its consequences. We have not used these filters here,
since for most of our targets’ meaningful threshold 
values would have led to the exclusion of a significant
fraction of the active compounds. It is our impression
that setting threshold values for hydrogen bonding con-
tributions is a less powerful tool for focusing a virtual
screen than using direct pharmacophore constraints, as
discussed in the next section. The nonbonded energies
depend strongly on the scaling of van der Waals radii for
nonpolar atoms and are therefore also difficult to use
with a specific threshold for filtering. The score compo-
nent filters will thus be useful only for well-established
virtual screening protocols where each of the heuristic
search parameters has been refined.

Docking under pharmacophore constraints

With the programs FRED and FlexX, docking can op-
tionally be performed under pharmacophore constraints.
This feature is especially useful for the inclusion of hy-
drogen bonding constraints in multiconformer docking.
We have seen above that it is difficult to focus the calcu-
lations of multiconformer docking runs on the essential
regions of the p38 MAP kinase and gyrase B ATP bind-
ing sites. For p38 MAP kinase, the pharmacophore was
defined as a sphere with 0.5 Å radius centered at the po-
sition of the acceptor nitrogen atom of an inhibitor com-
plexed with p38 MAP kinase (PDB entry 1bmk). A ni-
trogen or oxygen acceptor atom was required to be
placed within this sphere in hydrogen bonding distance
to the NH of Met109 in p38 MAP kinase. Enrichment
factors gained in this way are close to those obtained
with FlexX (Fig. 6). For gyrase B, a single pharmaco-
phore sphere was used to enforce hydrogen bonding to a
conserved water molecule (Fig. 1), which again led to
much higher enrichment. Even though pharmacophore
constraints can be defined at arbitrary points in space
and with arbitrary radii, they are only very roughly ob-
served during the calculation. The actual spatial exten-
sion of the volume segment occupied by ligand atoms
passing the pharmacophore depends on the resolution of
the grid used for shape fitting as well as on the proximity
of the pharmacophore point to the nearest grid point.
Nevertheless, the results we have obtained with single
point pharmacophore constraints in FRED are quite 
encouraging.

CPU time consumption

Table 2 gives an overview on CPU time consumption for
docking with FRED and Glide. For FlexX calculations
on parallel 16 SGI R12k 400-MHz processors an average
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Fig. 6 Enrichment of inhibitors for p38 MAP kinase and gyrase
B. Objective scoring functions are FlexXScore for FlexX, and
Gaussian for FRED. Inclusion of a pharmacophore constraint (def-
inition see text) in the FRED calculations led to similar results to
those obtained with FlexX. In Glide, pharmacophore constraints
cannot be defined



wall clock run time of 52 s/molecule can be assumed
[19]. The benchmark FRED results were run with a sin-
gle re-scoring process with ChemScore including full
optimization (ligand hydroxyl groups, solid body and
torsion angles). FRED run times of the docking process
mainly depend on two factors: (i) the shape properties of
the active site, which significantly affect the perfor-
mance of the shape fitting routine, and (ii) the number of
conformers generated by OMEGA. For instance, the
shape fitting routine is very efficient for the very narrow
and confined COX-2 binding site, and less so for the
larger estrogen binding site. The majority of the CPU
time is spent in re-scoring and optimization processes.
However, even with several subsequent re-scoring steps
including full optimization, FRED is about an order of
magnitude faster than FlexX. With respect to run times,
Glide is competitive neither to FRED nor to FlexX. As
can be seen from Table 2, the average docking time per
ligand is several minutes. Glide docking time signifi-
cantly increases if the average number of rotors per li-
gand increases. Schrödinger claim an average docking
time of a library with compounds containing 0–20 rotat-
able bonds of approximately 360 s (SGI R10K) per 
ligand. This is in rough accordance to the approximately
400 s (SGI R10K) we have measured per ligand for the
WDI subset.

Summary and conclusion

We have described structure-based virtual screening ex-
periments for seven different targets that differ signifi-
cantly in the characteristics of their binding sites. The
binding sites can roughly be grouped into three different
classes: lipophilic buried cavities (COX-2, estrogen re-
ceptor), targets of intermediate polarity with hydrogen
bonding motifs common to the majority of inhibitors
(p38 MAP kinase, gyrase B, thrombin) and targets with
very polar, solvent-exposed binding sites (neuramini-
dase, gelatinase A). The calculations were performed
with a variety of different objective and scoring func-
tions in combination with three fast, state-of-the-art
docking programs. The results show clearly that the per-
formance of docking algorithms, objective functions and
scoring functions strongly depends on characteristics of
the target structure. We have arrived at a number of gen-
eral guidelines that should help to direct the selection of

the best combination for a particular virtual screening
problem:

– For lipophilic binding sites where general steric fit of
ligands outweighs the importance of hydrogen bond-
ing, the method of choice is multiconformer docking
in combination with a soft objective function and a
harder scoring function.

– Binding sites that are predominantly lipophilic but
feature polar groups that must form specific interac-
tions to ligands are best dealt with by incremental
construction algorithms.

– For polar binding sites whose ligands have to form
networks of directed interactions, one has the choice
between incremental construction docking with hard
scoring functions or multiconformer docking with a
hard scoring function at least as an intermediate filter-
ing step.

– Incremental construction algorithms require a hard
objective function. If lipophilic interactions are of
particularly great importance, a softer function can be
used for scoring.

– Overall, ChemScore (or the related GlideScore)
seems to be the most generally applicable and robust
scoring functions to be used in combination with
multiconformer docking.

– Virtual screening runs are the more successful the
more narrowly and focused the search constraints are
defined. Consequently, such details as the definition
of the binding site boundaries are critical. In the pres-
ent study, this is done either by means of a rectangu-
lar box (FRED, Glide) or by a set of receptor atoms
(FlexX). It would be desirable to have both options
available in all tools. The inclusion of additional
pharmacophore constraints is possible in FRED or
FlexX. [37] This is helpful to incorporate previously
gained knowledge on ligand binding into virtual
screening runs.

We have found that FRED as a docking engine in combi-
nation with ChemScore as a scoring function is a good
general method for structure-based virtual screening.
Considering its high speed, FRED is certainly an espe-
cially attractive tool. Where the performance of FRED is
suboptimal, FlexX has specific strengths, so that these
two tools complement each other well. Glide performs
especially well where the intermediate force field opti-
mization step is necessary to filter out electrostatically
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Table 2 Overview on CPU
time consumption in FRED and
Glide docking procedures.
These benchmark calculations
were performed on SGI R10K
processors. FRED calculations
include a single screen using
ChemScore as the scoring
function and full optimization

Receptor Average no. Average no. of FRED average Glide average 
of rotors heavy atoms docking time (s) docking time (s)

COX-2 4.1 24.7 5 134
Estrogen rec. 4.2 26.7 15 290
p38 MAP kinase 4.7 26.6 9 133
Gyrase B 5.6 27.5 13 144
Thrombin 9.7 32.2 15 562
gel-A 9.9 30.6 13 513
Neuraminidase 6.5 21.1 8 207
WDI subset 5.6 24.2 13 400



mismatching poses, but is relatively slow compared to
the two other tools. For Glide, one should also keep the
enormous influence of the ligand input geometry on the
poses generated in mind, and that enrichment factors
given in this manuscript should be interpreted really
carefully.

To sum up, we believe that current docking tools are
mature enough for routine applications in the pharma-
ceutical industry. As long as they are not used as black
boxes, but with knowledge about the underlying algo-
rithms and heuristic assumptions, they provide a good
basis for rational compound selection.
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